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Entropy, dynamics, and instantaneous normal modes in a random energy model

T. Keyes*
Chemistry Department, Boston University, Boston, Massachusetts 02215

~Received 7 February 2000!

It is shown that the fractionf u of imaginary-frequency instantaneous normal modes~INM ! may be defined
and calculated in a random energy model~REM! of liquids. The configurational entropySc and the averaged
hopping rate among the states,R, are also obtained and related tof u with the resultsR; f u and Sc5a
1b ln(fu). The proportionality betweenR and f u is the basis of existing INM theories of diffusion, so the REM
further confirms their validity. A link toSc opens new avenues for introducing INM into dynamical theories.
Liquid statesare usually defined by assigning a configuration to the minimum to which it will drain, but the
REM naturally treats saddle barriers on the same footing as minima, which may be a better mapping of the
continuum of configurations to discrete states. Requirements for a detailed REM description of liquids are
discussed.

PACS number~s!: 64.70.Pf
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I. INTRODUCTION

The instantaneous normal modes@1–3# ~INM ! are the
eigenfunctions of the Hessian, the matrix of second der
tives of the potential energyU with respect to the mass
weighted atomic or molecular coordinates; the frequenc
are the square roots of the eigenvalues. INM differ fro
conventional normal modes because they are obtained
finite-T configurations sampled from an equilibrium distrib
tion. Consequently, in liquids or in finite-T solids, some INM
have imaginary frequencies, corresponding to downw
curvature of theU surface. The fractionf u , of Im-v is a
measure of the time the system spends above the inflec
points. We proposed@1# that f u should be proportional to the
rate of barrier crossing in the configuration space, and thu
the self-diffusion constantD. This picture is most appropri
ate to low-D states, e.g., supercooled liquids, and fits na
rally with the @4# potential energylandscapeparadigm. Con-
siderable effort@3,5–16# has gone into the INM approach t
diffusion, culminating in @15,16# two recent papers. We
showed@15# that the Im-v of the molecular centers of mas
accurately predictD over a range of;3 decades for seve
densities and eight temperatures of supercooled and n
melting CS2. La Naveet al. found @16# a similar result for
water. Given the pitfalls that have been identified@3,6–15#,
the description is far more successful than one might exp
The obvious question, then, is why it works so well.

While prior work has been mostly based upon the as
ciation of Im-v with barriers, we recently suggested@17# a
connection with the configurational entropy,Sc . Almost si-
multaneously, La Naveet al. demonstrated@16# a beautiful
linear master plot ofSc vs ln(fdw), where@9,12,14# f dw is the
fraction of Im-v modes withdouble wellpotential energy
profiles, offering the prospect of another route to physi
properties. The states included exhibitD; f dw . Adam and
Gibbs suggested@18# that Sc governs the slow relaxation in
supercooled liquids. Despite considerable empirical succ
there is no satisfactory derivation of the Adam-Gibbs re
tion. Perhaps this might be accomplished via INM.

*Email address: keyes@chem.bu.edu
PRE 621063-651X/2000/62~6!/7905~4!/$15.00
-

s

or

d

on

to

-

ar-

ct.

-

l

s,
-

The dynamics of supercooled liquids are so complex t
all theories are approximate and INM is no exception.
simplified model would be very helpful, and here we turn
a @19# random energy model~REM!. REM’s have played an
important role@20# in protein folding, and we believe tha
they have much to contribute to liquids. In a landmark pa
@20#, Bryngelson and Wolynes~BW! consider a chain of
N-interacting amino acids of whichNr are in the native
state; the fractionr is the order parameter. The resultin
hierarchical REM is not completely random, since the ra
dom properties are functions ofr. For liquids we suggest
following Adam-Gibbs, that cooperative local regions and
favored local packing replace individual amino acids and
local native state.

From the landscape point of view, states of a liquid a
usually defined as the local minima, orinherent structures
@21#, of U. Following Stillinger and Weber@21#, a configu-
ration is assigned to the minimum to which it will drain
Dynamics is then naturally visualized as hopping among
minima via the saddle-barriers. While the barriers are high
order critical points of theU surface, the system is neve
considered as ‘‘belonging’’ to them—they simply provid
the pathways between the essential objects, the min
~zero-order critical points!. This may be deceptive, since
liquid configuration is likely to be closer, by any reasonab
metric, to a barrier than to a minimum. Cavagna@22# has
proposed asaddles-ruled scenarioin which the system oc-
cupies, and hops among, critical points of any order. A ma
difficulty in pursuing this idea is that, while any configura
tion is easily assigned to a minimum, no unambiguous m
ping to the full set of critical points has been given.

BW give the energy distributionG(E,r) for states which,
a priori, can be either minima or saddles. Critical points
all orders are on the same footing from the beginning.
course, the REM has noU surface but BW define a mini
mum as a state for which all the connected states have hi
energy. In an early INM paper@6# we briefly touched on the
REM, suggesting that annth-order critical point should have
n neighbors with lower energy, although other schem
might be possible. Thus,f u may be calculated given the dis
tribution, Gc(E8,r;E), of states connected to a state wi
7905 ©2000 The American Physical Society
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7906 PRE 62T. KEYES
energyE. In general the conditionalGc is not the same as th
unconditionalG, but for simplicity BW assume that it is. Th
averaged rateR for hopping among the states naturally d
vides into contributionsRA and RB from hops to higher
~Cavagna mechanismA! and lower~mechanismB! energies;
the division is already explicit in BW. Barriers are not d
fined in the REM. An activation energy equal toDE is as-
sociated with hops to higher-energy states, while the act
tion energy for mechanismB is zero.

In this paper we calculatef u , Sc , and R in the REM,
treating both saddles and minima as states. We thus obta
explicit realization of the@22# saddles-ruled scenario, and i
relation to the Stillinger-Weber scheme is discussed. Diff
ent choices of states will lead to different definitions ofR and
of Sc . The result@16# of La Naveet al., Sc5a1b ln(fu), is
obtained and the physical basis of the connection betw
Im-v and entropy is explained. BothRA andRB are shown
to be ; f u , confirming the basis of INM diffusion theory
The assumption of uncorrelated neighbor energies is
cussed. The REM appears to be an attractive model for
ing INM theories and for liquids in general.

II. INM CALCULATIONS IN A RANDOM ENERGY
MODEL

Transposing the BW model, we imagine a liquid com
posed ofN cooperative local regions of whichNr are in the
local ground stateof favored packing. The energy distribu
tion of the states is

G~E,r!5@2pD~r!#1/2expH 2
@E2«~p!#2

2D~r!2 J , ~1!

where E~r! is the average energy andD~r! is the width.
While explicit expressions for the parameters will be
quired for many applications, here the informationE(r)
;D(r)2;N is sufficient, whereN is large. The total numbe
of states withr is denotedV(Nr),

V~Nr!5
N!vN~12r!

@N~12r!#! ~Nr!!
, ~2!

andv is the number ofexcited statesfor a local region.
With no U surface, various anzatz are needed to provid

dynamical framework. Following BW, a state of the ent
liquid is considered connected to neighbor states that d
by a change in a single local region; the number of neighb
is easily seen to beNv. The probabilities that a state chose
at random has energy less than or greater thanE are denoted
p,(E,r) and p.(E,r), and are given by the integral o
G(E8,r) from 2` to E and from E to 1`, respectively;
p,1p.51. The probabilities for connected states a
pc

,(E,r) andpc
.(E,r), obtained by replacingG(E8,r) with

Gc(E8,r;E) in the prescription above. Thus, using the B
rule, the probability that a state is a local minimum ispmin

5(pc
.)Nv, whereE,r arguments will be suppressed whenev

the meaning of the resulting expressions seems obvious
We proposed @6# that an nth order critical point

should haveNv2n neighbors with higher energy andn
with lower energy, with probability pn5(Nv)!/ @(Nv
2n)!n! #(p,)n(p.)Nv2n. The fraction of Im-v is then
n/Nv and
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f u~E,r!5 (
n50

Nv

~n/Nv !
N!

~Nv2n!!n!
~pc

,!n~pc
.!Nv2n

5pc
,~E,r!. ~3!

Equation~3! is the key to expressing physical quantities
the REM in terms of the fraction of Im-v modes. Assuming
uncorrelated neighbor energies and with the further argum
@19# that G(E,r);G@E,r6(1/N)#, it follows that p,

5pc
, , p.5pc

. , andf u5p,. We will use this simplification
in some of the arguments below, but we will strive f
greater generality whenever possible.

A. Imaginary frequency modes and the configurational
entropy

Turning to thermodynamics, the partition function is

Q~T!5 (
Nr50

N E
0

`

dE V~Nr!G~E,r!exp~2E/T!

[exp@2E~T!1Sc~T!#, ~4!

with units such thatkB51, and functions ofT only are en-
semble averages. Equation~4! incorporates the nontrivial as
sumption that all REM states, minima, and saddles, cont
ute equally. The entropy is identified asSc because the REM
has no vibrations and all degrees of freedom areconfigura-
tional.

In the inherent structure scheme, every configuration,
matter how close to a barrier, is assigned to a minimu
Moving among saddle barriers in the same basin does
change the configuration—it is highly anharmonic ‘‘vibr
tion.’’ Thus @16,23# Sc is obtained asS2Svib , whereSvib is
the vibrational entropy and contains both harmonic and
harmonic contributions for a system confined to a basin. T
definition ofSc is not equivalent to that of Eq.~4!. It will be
identical at lowT, since BW show that essentially all state
are minima below a crossover energyEc . The fundamental
definition of configurational entropy isSc(T)5Sliq(T)
2Sxtl(T), the difference between the liquid and crystal e
tropies at the sameT. We suggest that moving among th
barriers connected to a single basin is a liquidlike feat
absent in the crystal and should be included inSc(T). Again,
we hope that at the lowT of greatest interest any numeric
difference between the two versions ofSc is small.

Writing the entire summand-integrand of Eq.~4! as an
exponential, the exponent isO(N) and for a givenr will be
dominated by a most probableE, denotedE* . Expanding the
exponent to second order aboutE* and performing the
Gaussian integration yields

Q~T!5 (
Nr50

N

exp@2E* ~T,r!/T1Sc~T,r!#, ~5a!

where

Sc~T,r!5 ln@V~Nr!G„E* ~T,r!,r…A2pD~r!# ~5b!

and

E* ~T,r!5«~r!2D~r!2/T. ~5c!

Usually, a thermodynamicr should dominate andSc(T)
5Sc„T,r* (T)….

We now relate the entropy to the averaged Im-v fraction,



m

n

t

ry

e

in

on
d
h

a

y

p-

gy

t

g
a

ct

e

rly
r

PRE 62 7907ENTROPY, DYNAMICS, AND INSTANTANEOUS NORMAL . . .
denotedf u(T),

f u~T!5
(Nr50

N V~Nr!q~T,r!^ f u~T,r!&

(Nr50
N V~Nr!q~T,r!

, ~6!

where the average at fixedr is

^ f u~T,r!&5E
2`

`

dE G~E,r!exp~2E/T! f u~E,r!/q~T,r!,

~7!

and the constant-r partition function is

q~T,r!5E
2`

`

dE G~E,r!exp~2E/T!

5exp@2E* ~T,r!/T2D~r!2/~2T2!#. ~8!

The second equality is obtained with a Gaussian approxi
tion for the integrand. Equations~6!–~8! may be used to
average any quantityX by replacingf u(E,r) with X(E,r).

According to Eq.~5c!, E* lies O(N) below the center of
the distribution, which has widthO(AN). Thus,p, may be
evaluated using the asymptotic expansion of the error fu
tion,

p,~E,r!5
D~r!

A2p@«~r!2E#
expH 2

@E2«~r!#2

2D~r!2 J . ~9!

The essence of the connection between Im-v and entropy is
now visible. From Eq.~5b! the T dependence ofSc is deter-
mined by ln@G(E* ,r* )# and @Eqs. ~1! and ~9!# G(E* ,r* )
;p,(E* ,r* ). In the uncorrelated REM,̂p,&5 f u and the
average would ordinarily be determined by the dominanE
and r, p,(E* ,r* )5 f u ; thus Sc5a1 ln(fu), the result@16#
of La Naveet al. The physical reason for the relation is ve
simple. The fractionf u of directions withdownward curva-
ture at E* is proportional, absent correlation, to the numb
of states with energy less thanE* , which is also roughly the
number of states available to the system, which determ
Sc .

However, the situation is unusual ifpc
,5p,. With the

Nn neighbors of a state spread out over the full distributi
the exponent Eq.~9! is O(N). The function being average
in Eq. ~7! hasE dependence as strong as that of the weig
ing factorsG(E)exp(2E/T), the maximum of the integrand
is shifted fromE* , and

^ f u~T,r!&5^p,~T,r!&5

T expF2
D~r!2

4T2 G
ApD~r!

. ~10!

Referring to Eqs.~1! and~5c!, it is seen that thesquareof the
right-hand side has the same strong~exponential! T depen-
dence asG(E* ) and @Eq. ~5b!#

Sc~T,r!5 ln$V~Nr!@^ f u~T,r!&ApD~r!/T#2%

5a12 ln^ f u~T,r!&. ~11!

With dominance of a singler* , a linear relation betweenSc
and ln(fu) holds again.

Nonetheless, we expect thatSc5a1 ln(fu) is correct for
liquids. With no correlation, almost all the neighbors of
state are withinO(AN) of «~r!, while a thermally significant
a-

c-

r

es

,

t-

state hasE;E* ,O(N) below«~r!. Thus there are essentiall
no lower-energy neighbors, andf u;exp(2N). This is not
correct for liquids although it is essential for Eq.~11!, where
ln(fu) must beO(N). As a simple alternative example, su
pose the connected distribution is obtained fromG(E,r) by
increasing the width so that the neighbor-ener
differences E82E are O(1), Gc(E8,r;E);exp$2@E8
2«(r)#2/@2ND(r)2#%. Then f u(E);pc

,(E);G(E)1/N, f u is
dominated by E* , G(E* ); f u(E* )N, and Sc /N5c8
1 ln(fu), with both ln(fu) andc8 O(1). These are the correc
N dependences for liquids; the relation betweenSc and ln(fu)
is robust.

B. Imaginary frequency modes and the hopping rate

The unaveraged hopping rateR(E,r) is given in Eq.
~121! of BW, already divided into two terms correspondin
to Cavagna’s mechanismA and B. The escape rate from
state withE to one withE8 is given byR0 exp(2EA /T), with
EA5(E82E) for E8.E ~mechanism! A andEA50 for E8
,E ~mechanismB!. Recalling that there areNv neighbors,
averaging for fixedr yields

^RA~T,r!&5R0NnE
2`

`

dE G~E,r!exp~2E/T!E
E

`

dE8

3exp@2~E82E!/T#Gc~E8,p;E!/q~T,r!,

~12!

^RB~T,r!&5R0NnE
2`

`

dE G~E,r!

3exp~2E/T!pc
,~E,r!/q~T,r!

5R0Nn^ f u~T,r!&. ~13!

The connection betweenRB and f u is exact, and does not
requireGc5G.

We evaluatê RA(T,r)& by assumingGc5G, and by di-
viding the E integral into the contributionsRA

1 from 2` to
E* andRA

2 from E* to 1`. The factors of exp(2E/T) cancel
and the E8 integral is easily performed. The produ
G(E8)exp(2E8/T) is sharply peaked atE* , so for anyE
,E* the E8 integral is justq(T,r) and

^RA
1~T,r!&5R0Nnp,~E* ,r!. ~14!

As discussed above,p,(E* ,r) would usually equal
^p,(T,r)&5^ f u(T,r)&, but withGc5G the strongE depen-
dence ofp, leads@Eq. ~10!# to a different result:

^RA
1~T,r!&5R0NnSAp D~r!

2T D ^ f u~T,r!&2. ~15!

We anticipate that use of a more reasonableGc would re-
storeRA

1; f u . For E.E* the asymptotic expansion of th
E8 integral and some algebra yields^RA

2&5^RB&, and

^RA~T,r!&5R0Nn^ f u~T,r!&H 11SAp D~r!

2T D ^ f u~T,r!&J .

~16!

For the uncorrelated model, the second term in the cu
bracket is negligible@ f ;exp(2N)#, and despite the behavio
of RA

1,RA;RB;R; f u . The dominant contribution toRA

comes from hops to states with«(r).E8.E* , which is
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7908 PRE 62T. KEYES
reasonable since essentially all statistically significant st
lie in that range. With a dominantr, the final result is that
R(T) is indeed proportional tof u . Our arguments of an es
sential link between the Im-v modes and the hopping rat
are confirmed within the REM.

III. DISCUSSION

The empirical evidence for proportionality betweenD and
f u in liquids is @15,16# now very strong. The complexity o
the U surface, however, renders a theoretical proof of t
relation impossible. Some Im-v in liquids unquestionably
correspond to nondiffusive anharmonicities and these m
not be used to expressD. Our study of CS2 uses@15# center-
of-mass modes to remove rotational anharmonicities, w
La Naveet al. use@16# only modes with double-wellU pro-
files. Thus the REM, a simplified model that allows una
biguous INM calculations and still preserves some essen
dynamics and statics, is most appealing. In the REM,
hopping rate among the critical points is clearly proportio
to f u . Despite the theoretical challenges that arise for r
liquids, the calculations just presented, along with the rec
simulations@15,16# provide the strongest arguments yet o
fundamental connection between Im-v and diffusion.

The REM has also allowed us to derive the result@16# of
La Naveet al., a linear relation betweenSc and ln(fu). The
physical basis of the relation is very simple: the fewer sta
below the thermodynamicE* , the lower the configurationa
entropy, and the fewer the number of directions with dow
ward curvature. INM may now provide a new way to unde
stand the role ofSc in dynamics, suggested@18# by Adam
and Gibbs but never proven satisfactorily. A newer propo
@24# is that of Dzugatov,D* ;exp(S2), whereD* is a scaled
D and S2 is the ‘‘pair correlation entropy’’; ifD; f u and
Sc5a1 ln(fu) we obtain D* ;exp(Sc). Sciortino and co-
workers argue@12,16# that f u should vanish at the tempera
ture Tc where activated dynamics becomes important. T
corresponds to the system choosing a minimum from all
available critical points as the thermodynamic state. Sub
tuting Eq.~3! into Eq. ~7! of BW yields the probability that
the system is in a minimum
tt

y

es

s

st

le

-
al
e
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al
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e
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PLM5exp@2Nu f u#;

nonzeroPLM, or activated dynamics, requiresf u;O(1/N).
At some steps in this paper, we have employed the un

related approximation to the energy distribution of neighb
states,Gc(E8,r;E)5G(E8,r), which yields incorrectN de-
pendences. However, the important result is the interrelat
betweenR and f u andSc and f u , not theN dependences o
these quantitiesper se. Furthermore, we have argued that t
important f u dependences will hold up for a broad range
possible choices forGc(E* ,r;E), including those appropri-
ate for liquids. Equation~13! for RB is exact and independen
of the form of Gc , while RA was derived assumingGc
5G. Perhaps aGc-independent exact result forRA might
also exist, because bothR and f u are governed byGc . On
the other hand,Sc is a functional ofG only, so a relation to
f u will depend on the form ofGc ; nonetheless we believ
any reasonableGc will give the result of La Naveet al. @16#.

In the REM, the system naturally moves about the criti
points of all orders, with no special role for the minima. Th
contrasts with the usual procedure in liquids of assignin
configuration to the minimum to which it drains. Cavag
suggests@22# that the saddles should be treated explicitly
liquids, and the REM provides an easy way to do this. A
though we indicated how to transpose the protein-REM
liquids, we never considered explicit values of the para
eters or theirr dependences. This will be done in futu
work on modeling supercooled liquids with the REM. A be
ter treatment ofGc might also allow realization of Cavagna’
hypothesis that mechanismsA andB have differentT depen-
dence.
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