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Entropy, dynamics, and instantaneous normal modes in a random energy model
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Chemistry Department, Boston University, Boston, Massachusetts 02215
(Received 7 February 20D0

It is shown that the fractioif, of imaginary-frequency instantaneous normal modk#$1) may be defined
and calculated in a random energy motREM) of liquids. The configurational entrogy, and the averaged
hopping rate among the stateR, are also obtained and related tg with the resultsR~f, and S;=a
+bIn(f,). The proportionality betweeR andf , is the basis of existing INM theories of diffusion, so the REM
further confirms their validity. A link tdS; opens new avenues for introducing INM into dynamical theories.
Liquid statesare usually defined by assigning a configuration to the minimum to which it will drain, but the
REM naturally treats saddle barriers on the same footing as minima, which may be a better mapping of the
continuum of configurations to discrete states. Requirements for a detailed REM description of liquids are
discussed.

PACS numbds): 64.70.Pf

I. INTRODUCTION The dynamics of supercooled liquids are so complex that
all theories are approximate and INM is no exception. A
The instantaneous normal modfs-3] (INM) are the simplified model would be very helpful, and here we turn to
eigenfunctions of the Hessian, the matrix of second derivaa[19] random energy mod¢REM). REM’s have played an
tives of the potential energy with respect to the mass- important role[20] in protein folding, and we believe that
weighted atomic or molecular coordinates; the frequencieghey have much to contribute to liquids. In a landmark paper
are the square roots of the eigenvalues. INM differ fromf2q], Bryngelson and Wolyne$BW) consider a chain of
conventional normal modes because they are obtained fQ{.interacting amino acids of whichlp are in the native
finite-T configurations sampled from an equilibrium distribu- state; the fractiorp is the order parameter. The resulting

tion. Consequently, in liquids or in finitg-solids, some INM  Liararchical REM is not completely random, since the ran-

have imaginary frequencies, corresponding to downwarqi . . P
. . om properties are functions @f For liquids we suggest,
curvature of theU surface. The fractiorf,, of Im-w is a prop A 99

. ) . following Adam-Gi h rative local regions an
measure of the time the system spends above the inflecti gllowing Adam-Gibbs, that cooperative local regions and a

points. We proposefl] that f, should be proportional to the Y3vored local packing replace individual amino acids and the

rate of barrier crossing in the configuration space, and thus tlc())Cal native state. . : -
From the landscape point of view, states of a liquid are

the self-diffusion constariD. This picture is most appropri- X . .
b bprop usually defined as the local minima, mherent structures

ate to lowD states, e.g., supercooled liquids, and fits natu ) .t .
rally with the[4] potential energyandscapeparadigm. Con- [21], of U. Following Stillinger and Webef21], a configu-

siderable effor{3,5-16 has gone into the INM approach to ration i_s a;signed to the m_inimL_Jm to which .it will drain.
diffusion, culminating in[15,16 two recent papers. We Dynamics is then naturally visualized as hopping among the
showed[15] that the Imw of the molecular centers of mass minima via the saddle-barriers. While the barriers are higher-
accurately predicD over a range of-3 decades for seven order critical points of thelJ surface, the system is never
densities and eight temperatures of supercooled and nesfonsidered as “belonging” to them—they simply provide
melting CS. La Naveet al. found [16] a similar result for the pathways between the essential objects, the minima
water. Given the pitfalls that have been identif{@6—-19, (zero-order critical poings This may be deceptive, since a
the description is far more successful than one might expecliquid configuration is likely to be closer, by any reasonable
The obvious question, then, is why it works so well. metric, to a barrier than to a minimum. Cavadi2®2] has
While prior work has been mostly based upon the assoproposed ssaddles-ruled scenarim which the system oc-
ciation of Im-w with barriers, we recently suggestgti/] a  cupies, and hops among, critical points of any order. A major
connection with the configurational entrofy,. Almost si-  difficulty in pursuing this idea is that, while any configura-
multaneously, La Navet al. demonstrated16] a beautiful  tion is easily assigned to a minimum, no unambiguous map-
linear master plot 0§ vs In(fq,), where[9,12,14 f, isthe  ping to the full set of critical points has been given.
fraction of Im-w modes withdouble wellpotential energy BW give the energy distributio®(E,p) for states which,
profiles, offering the prospect of another route to physicala priori, can be either minima or saddles. Critical points of
properties. The states included exhibit-fy,. Adam and all orders are on the same footing from the beginning. Of
Gibbs suggestefll8] that S; governs the slow relaxation in course, the REM has nd surface but BW define a mini-
supercooled liquids. Despite considerable empirical succesmum as a state for which all the connected states have higher
there is no satisfactory derivation of the Adam-Gibbs rela-energy. In an early INM papé6] we briefly touched on the
tion. Perhaps this might be accomplished via INM. REM, suggesting that amth-order critical point should have
n neighbors with lower energy, although other schemes
might be possible. Thug,, may be calculated given the dis-
*Email address: keyes@chem.bu.edu tribution, G.(E',p;E), of states connected to a state with
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energyE. In general the condition&.. is not the same as the No NI
unconditionalG, but for simplicity BW assume that it is. The fu(E.p)= 2, (N/Nv) ————(pg)"(p )N "
averaged rat® for hopping among the states naturally di- n=0 (Nv—=njtn!
vides into contributionsR, and Rg from hops to higher =p=(E,p). 3)
(Cavagna mechanis#) and lower(mechanisnB) energies; ¢
the division is already explicit in BW. Barriers are not de- Equation(3) is the key to expressing physical quantities in
fined in the REM. An activation energy equal AE is as- the REM in terms of the fraction of Ine modes. Assuming
sociated with hops to higher-energy states, while the activaincorrelated neighbor energies and with the further argument
tion energy for mechanisiB is zero. [19] that G(E,p)~G[E,p=(1MN)], it follows that p~

In this paper we calculaté,, S;, andR in the REM, =P, P~ =p, , andf,=p~. We will use this simplification
treating both saddles and minima as states. We thus obtain #h some of the arguments below, but we will strive for
explicit realization of thé22] saddles-ruled scenario, and its greater generality whenever possible.
relation to the Stillinger-Weber scheme is discussed. Differ-
ent choices of states will lead to different definitiondRodind
of S;. The resulf16] of La Naveet al, S;=a+bIn(fy), is
obtained and the physical basis of the connection between Turning to thermodynamics, the partition function is

A. Imaginary frequency modes and the configurational
entropy

Im-w and entropy is explained. BofR, and Rg are shown N "
to be ~f,, confirming the basis of INM diffusion theory. QM= D, dEQ(Np)G(E,p)exp —E/T)
The assumption of uncorrelated neighbor energies is dis- Np=0 JO

cussed. The REM appears to be an attractive model for test- _ _
ing INM theories and for liquids in general. =l —B(M+S(D], @)
with units such thakg=1, and functions ofl only are en-
II. INM CALCULATIONS IN A RANDOM ENERGY semble averages. Equatioh incorporates the nontrivial as-
MODEL sumption that all REM states, minima, and saddles, contrib-
) ) ) o ute equally. The entropy is identified 8s because the REM
Transposing the BW model, we imagine a liquid com-has no vibrations and all degrees of freedom @vefigura-
posed ofN cooperative local regions of whidkp are in the  tjonal.

local ground stateof favored packing. The energy distribu-  In the inherent structure scheme, every configuration, no
tion of the states is matter how close to a barrier, is assigned to a minimum.
[E—e(p)]? Moving among s.addle. barr!er_s in. the same basi.n dogs not
G(E,p)z[ZwA(p)]l’Zexp[ — —2] 1)  change the configuration—it is highly anharmonic “vibra-
2A(p) tion.” Thus [16,23 S, is obtained aS—S,;,, whereS,;, is

. , , the vibrational entropy and contains both harmonic and an-
Whgre E(p) is the average energy anil(p) is the yv'dth- harmonic contributions for a system confined to a basin. This
While explicit expressions for the parameters will be re-gefinition of S, is not equivalent to that of Eq4). It will be
quired for many applications, here the informatiép)  identical at lowT, since BW show that essentially all states
~A(p)®~N is sufficient, wherd\ is large. The total number are minima below a crossover enery. The fundamental

of states withp is denoted2(Np), definition of configurational entropy isSe(T)=S;,(T)
N1y N(=p) —Su(T), the difference between the liquid and crystal en-
Q(Np)= ' , (2)  tropies at the sam&. We suggest that moving among the
[N(1=p)]H(Np)! barriers connected to a single basin is a liquidlike feature

absent in the crystal and should be include&i(T). Again,
we hope that at the low of greatest interest any numerical
Qifference between the two versions §f is small.

Writing the entire summand-integrand of E@) as an
xponential, the exponent @(N) and for a giverp will be
ominated by a most probalie denotedE* . Expanding the
exponent to second order aboHt and performing the
Gaussian integration yields

N

andv is the number ofxcited stateor a local region.

With no U surface, various anzatz are needed to provide
dynamical framework. Following BW, a state of the entire
liquid is considered connected to neighbor states that differ
by a change in a single local region; the number of neighbor%
is easily seen to bBlv. The probabilities that a state chosen
at random has energy less than or greater thare denoted
p=(E,p) and p~(E,p), and are given by the integral of
G(E’',p) from —o to E and fromE to +o, respectively;
p=+p~=1. The probabilites for connected states are Q(T)=NZO exd —E*(T,p)/T+S(T,p)], (59
ps (E,p) andp; (E,p), obtained by replacin@(E’,p) with -
G.(E’,p;E) in the prescription above. Thus, using the BW where
rule, the probability that a state is a local minimumpis;,
=(p)™, whereE, p arguments will be suppressed whenever
the meaning of the resulting expressions seems obvious. and

We proposed[6] that an nth order critical point * _ -~ 2
should haveNv —n neighbors with higher energy ana EX(Top)=elp)=Alp)IT. 9
with lower energy, with probability p,=(Nv)!/[(Nv Usually, athermodynamicp should dominate and(T)
—n)!In!](p=)"(p7)N~". The fraction of Ime is then =S(T,p*(T)).
n/Nv and We now relate the entropy to the averageddnfraction,

So(T,p)=IN[Q(Np)G(E*(T,p),p)\2mA(p)] (5b)



PRE 62 ENTROPY, DYNAMICS, AND INSTANTANEOUS NORMA. . .. 7907

denotedf ,(T), state ha&~E*,O(N) belowe(p). Thus there are essentially
N no lower-energy neighbors, ang~exp(—N). This is not
£(T)= ENp:o’?(NP)Q(T,p)(fu(T,P)> ’ ()  correct for liquids although it is essential for Hd.1), where
2Np=0UNp)Q(T,p) In(f,) must beO(N). As a simple alternative example, sup-

pose the connected distribution is obtained fr&itE, p) by
increasing the width so that the neighbor-energy
% differences E'—E are O(1), G(E',p;E)~exp—[E’
<fu(T,p)>:j_och G(E,p)eXF(_E/T)fu(E,p)/Q(T,p), —S(p)]Z/[ZNA(p)Z]} Then fu(E)Nps(E)NG(E)llN, fu is
(77 dominated by E*, G(E*)~f,(E*)", and S/N=c’
+In(f,), with both Inf,) andc’ O(1). These are the correct
and the constang-partition function is N dependences for liquids; the relation betw&erand In,)

o is robust.
q(T.p)= f dE G(E,p)exp(—E/T)

where the average at fixgdis

B. Imaginary frequency modes and the hopping rate

=exd —E*(T,p)/T—A(p)?(2T?)]. (8) The unaveraged hopping ra(E,p) is given in Eq.
(121) of BW, already divided into two terms corresponding
The second equality is obtained with a Gaussian approximao Cavagna’s mechanisi and B. The escape rate from a
tion for the integrand. Equation®)—(8) may be used to state withE to one wWithE' is given byR, exp(—EA/T), with
average any quantit( by replacingf,(E,p) with X(E,p). E,=(E’'—E) for E'>E (mechanismA andE,=0 for E’
According to Eq.(5c), E* lies O(N) below the center of <E (mechanisnB). Recalling that there arBlv neighbors,
the distribution, which has widt®(/N). Thus,p~ may be  averaging for fixedp yields
evaluated using the asymptotic expansion of the error func- w o
tion, (Ra(T,p))= RONvf dE G(E,p)exp — E/T)f dE’
—o E

<(Epy= ) eXp{_[E—S(p)]Z
P e —E] 25(p)?

The essence of the connection betweendrand entropy is .

now visible. From Eq(5b) the T dependence o, is deter- (Rg(T,p))= RoNVf dE G(E,p)
mined by IHG(E*,p*)] and [Egs. (1) and (9)] G(E*,p*) —o
~p=(E*,p*). In the uncorrelated REM,p~)=f, and the B <
average would ordinarily be determined by the domirant xexp—E/T)pe (E,p)/q(T.p)

andp, p~(E*,p*)=f,; thusSc=a+In(f,), the result{16] =RoNv(f,(T,p)). (13
of La Naveet al. The physical reason for the relation is very ) )

simple. The fractiorf,, of directions withdownward curva-  1h€ connection betweeRg and f, is exact and does not
ture at E* is proportional, absent correlation, to the number'€quireGc=G. , B ,
of states with energy less th&t , which is also roughly the We evaluatgRa(T, p)) by assumings.=G, and by di-

. . . . . l
number of states available to the system, which determinedding thg E integral into the contribution&), from — to
S.. E* andRj from E* to +. The factors of exp E/T) cancel

However, the situation is unusual - =p=. With the and ,the E’ i,nteg_ral is easily perform*ed. The product
Nv neighbors of a state spread out over the full distribution,G(E* )exp(TE m is ;hgrply peaked aE*, so for anyE
<E* theE' integral is justq(T,p) and

the exponent Eq(9) is O(N). The function being averaged

]- 9 Xexd —(E'—E)/TIG(E",p;E)/q(T.p),
(12

in Eq. (7) haskE dependence as strong as that of the weight- (R,i(T,p))z RoNvp=(E*,p). (14
ing factorsG(E)exp(—E/T), the maximum of the integrand .
is shifted fromE* . and As discussed abovep<(E*,p) would usually equal
) (p=(T,p))=(fu(T,p)), but withG.=G the strongt depen-
T exp{ _ A(Pg } dence ofp™= leads[Eq. (10)] to a different result:
=(p< - - @ - T A
N T I (Ri(T,p)):RONv(—\/_ZT(p ))<fu<T,p>>2- 19

Referring to Eqs(1) and(5c¢), it is seen that thequareof the
right-hand side has the same stroegponential T depen-
dence asG(E*) and[Eq. (5b)]

S(T,p) =IN{Q(NP)[{f (T, p))TA(p)IT]?
=a+2In(f(T,p)). ay  (RaTp)= RONV<fu(T!P)>{ 1+

We anticipate that use of a more reasonaBlewould re-
store R}\~fu. For E>E* the asymptotic expansion of the
E’ integral and some algebra yieldB3)=(Rg), and

T A
%)UU(T!I)»] :

With dominance of a singlg*, a linear relation betwee8, (16

and Inf,) holds again. For the uncorrelated model, the second term in the curly
Nonetheless, we expect thgt=a+In(f,) is correct for  bracket is negligibl¢ f ~exp(—N)], and despite the behavior

liquids. With no correlation, almost all the neighbors of aof R}\,RA~RB~R~fu. The dominant contribution t&R,

state are withirO(\/N) of &(p), while a thermally significant comes from hops to states wi#h(p)>E’'>E*, which is
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reasonable since essentially all statistically significant states PLvw=exd —Nof];
lie in that range. With a dominant, the final result is that

R(T) is indeed proportional td,,. Our arguments of an es-

sential link between the Ina» modes and the hopping rate

are confirmed within the REM. nonzeroP,,,, or activated dynamics, requirég~O(1/N).

At some steps in this paper, we have employed the uncor-
related approximation to the energy distribution of neighbor
statesG.(E’,p;E)=G(E",p), which yields incorrecN de-

The empirical evidence for proportionality betwedrand  pendences. However, the important result is the interrelations
fy in liquids is[15,16 now very strong. The complexity of betweenR andf, andS, andf,, not theN dependences of
the U surface, however, renders a theoretical proof of thishese quantitieper se Furthermore, we have argued that the
relation impossible. Some Im-in liquids unquestionably jmportantf, dependences will hold up for a broad range of
correspond to nondiffusive anharmonicities and these mugiossible choices foB.(E*,p;E), including those appropri-
not be used to express Our study of CSuses[15] center-  ate for liquids. Equatiofil3) for Rg is exact and independent
of-mass modes to remove rotational anharmonicities, whilgyf the form of G., while Ry was derived assumin,

La Naveet al. use[16] only modes with double-well pro- _—g. Perhaps @G.-independent exact result f&, might
files. Thus the REM, a simplified model that allows unam-5|sg exist, because bof and f,, are governed byG,.. On
biguous INM calculations and still preserves some essentighg gther handS, is a functional ofG only, so a relation to
dynamics and statics, is most appealing. In the REM, thg ;i depend on the form ofG.; nonetheless we believe
hopping rate among the critical points is clearly proportlonalany reasonabl6&, will give the result of La Naveet al.[16].

to f,. Despite the theoretical challenges that arise for real |, {he REM, the system naturally moves about the critical
liquids, the calculations just presented, along with the receMigints of all orders, with no special role for the minima. This
simulations[ 15,16 provide the strongest arguments yet of acontrasts with the usual procedure in liquids of assigning a
fundamental connection between kmand diffusion. configuration to the minimum to which it drains. Cavagna

The REM has also allowed us to derive the repll] of g ggestg22] that the saddles should be treated explicitly in
La Naveet al, a linear relation betwee§; and Inf.). The  |iquids, and the REM provides an easy way to do this. Al-
physical basis of the relation is very simple: the fewer stategnough we indicated how to transpose the protein-REM to
below the thermodynamiE*, the lower the configurational liquids, we never considered explicit values of the param-
entropy, and the fewer the number of directions with down-gters or theirp dependences. This will be done in future
ward curvature. INM may now provide a new way to under-york on modeling supercooled liquids with the REM. A bet-
stand the role of5; in dynamics, suggested8] by Adam  ter treatment ofs, might also allow realization of Cavagna’s

and Gibbs but never proven satisfactorily. A newer proPOSé‘hypothesis that mechanismsandB have differentT depen-
[24] is that of DzugatovD* ~exp(S,), whereD* is a scaled  gence.

D and S, is the “pair correlation entropy”; ifD~f, and

S.=a+In(f,) we obtain D* ~exp(&). Sciortino and co-

workers argue{lz,_lq that f, sho_uld vanish at_the tempera-_ ACKNOWLEDGMENTS
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